cancer

Tattoos and Vaccines: Muddled Thinking And A Good Idea

“Often wrong, never in doubt”  Anonymous

Muddled thinking. Despite reams of evidence to the contrary, including a recent Nobel Prize for the technology, vaccine fabulists, like RFK, Jr, , Robert De Niro, Jenny McCarthy, my own Senator Ron Johnson, and too many others continue to spread intentional disinformation about the safety and efficacy of the COVID mRNA vaccines. Despite these naysayers, mRNA vaccines are here to stay and new ones are being developed for many other maladies that have been hard to vaccinate for, like cancer, HIV, several animal diseases, etc.

I keep encountering people who belabor the same old disproven canards about millions of people falling dead from the vaccines, about the vaccines being “experimental,” and “gene therapy.” All this disinformation continues despite the fact that tens of billions of jabs have been given to 5.6 billion vax recipients around the world over the last 4+ years. At what point does  fact replace lie and truth supplant fable? The world’s entire medical establishment does not agree with these deceivers, yet they continue to sound the sham anti-vax alarm undaunted. I have pondered in these pages whether this willful dissemination of such disinformation that could affect peoples’ lives and health could be criminal. A case for this could be made.

The funny thing is that these alarmists are announcing the sky is falling over something well tested and vetted while ignoring another very common jab that many of them have likely have gotten without questioning, but that does have significant effects on one’s immune system: tattoos (see vocal anti-vaxer and celebrated tattoo artist, Kat Von D). When you stick hundreds of ink-filled needles into your skin, can it be good for you? Anti-vaxers worry about well tested and vetted vaccines, but never worry about tattoos. Why their selective outrage?

Afraid of needles

Much of tattooing remains mysterious: Scientists aren’t fully sure what makes certain tattoos fade fast, why others stick around when they’re supposed to disappear, or how they react to light. Given the fact that tat recipients are sitting for multiple injections of unknown substances into their bodies that last forever, tattooing would seem like a much better way than vaccines for someone like Bill Gates to poison us; or to use them for something sinister like mind control, or as a way to control the world population, as the vax chicken-littles often frett about with the mRNA vaccines. Why aren’t folks up in arms over this vast potential conspiracy? (Cynicism mine!)

What do tattoos do? The Atlantic recently ran an article about how tats mess with the immune system and a subsequent quick search found other concerning aspects about them. The practice involves poking dozens to thousands of holes into the middle layer of the skin, or dermis, and depositing different formulations of chemicals, or pigments, that permanently remain behind. Contrast that to the single shot of a typical vaccine that deposits into a muscle a single dose of an agent that has undergone extensive testing and approval for safety and that quickly is eliminated by the natural scavenger cells and processes of the body’s immune system so nothing remains soon after the shot is given. Both procedures irritate the immune system, but one is permanent, the other temporary.

When the hundreds of needle pricks deposit ink into the dermis for a tat, the immune system detects an assault on its body and jumps into action. The skin after all, is our immune system’s first barrier and it is well loaded with rapid-response defensive cells that lead the assault on the pigment intruder. This generally works well to heal wounds and clear infections, but the system breaks down trying to fight tat ink. The immune system simply cannot adequately clear that intruder. Rather, the pigments persist in the belly of the immune cells and skin cells, only to again be gobbled up when those cells die and disgorge their undigested contents. Then the process repeats, ad nauseam leaving a permanent stain in the skin.

Over time, the edges of tats fray and become fuzzy as ink particles are gradually shuttled away into the draining lymph nodes, which normally handle viruses, bacteria, fungi, etc. In the nodes, the immune system then revs up to recruit and deliver antibodies and T cells around the body to combat intruders that escape further into the interior. These nodes normally are pale white, but in tattooed people, they can be the color of the tattoo ink.

Thus not only is the skin tattooed, so are the lymph nodes!

It is not clear if all this misdirected immune response to tattoo ink throws the immune system off its game of surveillance against infectious pathogens. One study published last year found that tat ink can affect the function of immune cells. But, in another Australian study, tat ink was mixed with a vaccine in order to track the fate of the vaccine components after vaccination. There was no evidence of any untoward effect of the pigment on the vaccine itself. Other immunological differences between heavily tattooed and un-tattooed people have been noted but it remains unclear whether these are for the better or the worse. So, it remains uncertain whether tattoos are good or bad for one’s immune system.

However, tat ink can be harmful in other ways. The European Union banned certain pigments, that they believe are linked to bladder cancer. And a 2016 report from the Australian government found that >80% of black inks contained carcinogenic polycyclic aromatic hydrocarbons (PAHs). Other pigments may contain other harmful substances like barium, cadmium, lead, mercury, micro-plastics, etc. Then there always is the real risk of infection or allergic reaction when anything is injected into your body. Nice.

Tattoo-like vaccines: a good idea. In a typical vaccine, the shot is delivered into an arm muscle where the immune system is not as robust as in the skin. The skin being a primary barrier to a hostile outside world is well stocked with an armament of immune sentry cells, muscles deeper in the arm not so much. But, there are enough immune cells in muscles to get the job done and develop protective immunity to antigens which the vax delivers. For an intramuscular vaccine delivered to an arm muscle, usually a comparatively large antigen dose is used and it takes a bit of time to get the immune system in gear. Mobile immune cell cops where the vaccine bolus is deposited gobble up the material like a squirrel shovels nuts in its mouth, and then head to nearby lymph nodes to “report” that an intruder was encountered. This gets the army of T and B lymphocytes ginned up and pumping out antibodies, other immune molecules and cytokines, and other cells to respond the intruder. You are then “immunized.” This also sometimes causes the temporary malaise associated with vaccines—mild fever, fatigue, flu-like symptoms and maybe arm pain. In rare cases, allergies happen, which is a rapidly arising, acute immune response to a component in the vaccine, such as chicken egg material found in many, but not all, flu vaccines. 

However, a few vaccines are actually given in the skin, more like tattoos are administered. Currently this route is used to vaccinate for small pox, TB, rabies, and more recently, mpox (formerly called monkey pox). Some studies, but not all, have shown that the intradermal (ID) vaccine route can outperform the intramuscular (IM) vax route. For this reason, other vaccines are now being developed to be given this way simply because the skin immune system is more robust and this might provide a more effective way to vaccinate, and it uses less vaccine material. This is called intradermal vaccination.

But intradermal (ID) vaccines are not that easy to administer. If not done properly and the vax material is injected too deep, which is easy to do, their efficacy can drop precipitously, just like Biden’s presidential chances plummeted after the disastrous debate. So, medical folk are actually looking at different vaccine technologies, including using tattoo machines to administer effective ID vaxes on a large scale across many clinics large and small. One technique using a DNA vaccine, called DNA tattooing has been tested in animal models and human trials and was inspired by traditional tattoo machines, which are pretty easy to use.

Bottom line: The way that vaccinologists have taken notice of tattoo technology to improve vaccine efficacy is intriguing. They have taken their science knowledge of skin immunology and realized that the pop culture tattoo fad just might improve vaccine technology and public health. That is very cool.

The sad irony is that many people who get tattooed are also vax deniers. Their cognitive dissonance is disturbing. Vax deniers loudly spread disinformation about vaccine dangers, then are completely sanguine about tattoos which inject strange chemicals into their bodies, some of which have been clearly proven to be unhealthy.

That selective outrage betrays the intellectual dishonesty and lack of curiosity of anti-vaccine dissemblers. Too bad we can't vaccinate against that.

Acknowledgment: I am indebted to Frank C. (no relation) for helping procure an article needed to write this blog post, which I had a very hard time accessing without paying a full subscription to the journal. Thanks Frank!

Note: In order to have blog updates delivered to your email, see the simple Subscription Instructions here. Remember, you can easily unsubscribe when you want.


Parkinson’s Disease—An Unexpected Ravage of COVID?

Thus, (tho, ‘tis Life’s great Preservation) many oppose Inoculation.

-Benjamin Franklin, Poor Richard’s Almanac, 1737

SARS-CoV-2 and its disease, COVID, are very strange. They have given us black toes, lungs like chocolate pudding, long-term fatigue, depression, death, and vaccine deniers. It has been quite a ride. And we are learning that having COVID also puts one at risk for other non-COVID maladies…like chocolate pudding lungs was not enough!

In previous posts, I wrote about the clear link between new-onset type 2 diabetes arising in many patients following COVID. There also is suspicion that cancer might increase down the road due to CoV-2 inactivation of a cellular gene that puts a brake on cancer, P53, in COVID patients. Inactivate that gene and you release the brake on certain cancers. Therefore, there is concern that some COVID patients will experience an elevated incidence of cancer in the future.

New research now raises a real concern that COVID patients might also be at increased risk for developing Parkinson’s disease. Parkinson’s arises when neurons deep in the brain that produce a critical neurotransmitter, dopamine, begin to die off leaving a dearth of this critical chemical that sends signals between neurons. It is like cutting a phone wire. Crucial communications cease.

The study conducted in collaboration between scientists from Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and Columbia University College of Physicians and Surgeons was published in Cell Stem Cell last January. Investigators took human induced pluripotent stem cells and coaxed them to become brain cell progenitors that could form into human brain organoids in tissue culture. Such small, nascent “brain-like” structures contain a variety of functional neural cells. They were exposed to the CoV-2 virus, which was shown to preferentially infect and selectively cause the dopamine-producing cells to shut down.

While brain autopsies of COVID patients have not revealed direct COVID infection, they have found unique gene patterns associated with cell senescence, which was especially profound in areas rich in dopamine-producing neurons. This also supports the notion that COVID disease contributes to neurological problems that could cause Parkinson’s disease.

Putting these two findings together is complicated at this time, but they strongly suggest a direct involvement for one or more mechanisms resulting from CoV-2 infection in causing the myriad neurological symptoms that have been seen in COVID patients, and maybe other neurological problems like Parkinson’s not yet attributed to COVID.

Bottom line: CoV-2 is a nasty bug and COVID is a nasty disease. It seems that getting vaccinated not only protects you from nasty flu-like disease and death, it can also protect you from the following:

  1. long COVID
  2. type 2 diabetes
  3. maybe cancer
  4. and now, maybe Parkinson’s disease

Why would anyone not want to avoid these? Get the shots!

Interesting addendum: The studies showing that CoV-2 virus can selectively infect dopamine producing neurons went a step further. They also tested a large panel of drugs already approved for other health problems to see if any could unexpectedly protect these critical cells from infection. Sure enough they found three drugs that protected the neurons: Riluzole (used to treat Lou Gehrig’s disease) Metformin (commonly prescribed for diabetes management), and most interesting to me, Imatinib, or Gleevic (used for treating certain leukemias and cancers).

I say this is interesting to me because of my own research beginning at UCLA in the mid-80s, and extending to the University of Wisconsin into this century. My research focused on certain leukemias that carry a specific chromosome abnormality that appears in 99% of patients with chronic myelogenous leukemia (CML), and in fewer patients with acute lymphoblastic or acute myeloblastic leukemias (ALL and AML respectively). When I began studying this, the presence of this chromosome aberration was a death sentence. There was no effective treatment. Patients did not survive long. We identified the specific genetic abnormality, cloned the abnormal gene, sequenced it and found it was parts of two genes stuck together. Most importantly, we also described the enzymatic pathway in cells that it screwed up. All this eventually led to the development of a drug that tamed the misbehaving enzymatic pathway so that now >95% of patients with these diseases are fully cured with medicine that is pretty easy to tolerate. What once was a death sentence is now an easily treated disease. Knowing that makes me feel pretty good.

The drug that cures leukemia patients from what once was a lethal disease is called Imatinib; one of the drugs found to also protect dopamine producing neural cells from CoV-2 virus destruction.

That too will make me feel pretty good if it also happens to prevent neurological problems in COVID patients. Who would have guessed? This is the unpredictable way science often works.


Take Your Vaccine Skepticism To A Cemetery

“Still a man hears what he wants to hear and disregards the rest”

            --Paul Simon, in The Boxer

They say you won’t find an atheist in a foxhole. Well, perhaps you shouldn’t find a vaccine skeptic in a cemetery, either. Bear with me and I will explain.

I have been reading about how vaccine skepticism is growing beyond the COVID vaccine to include other common vaccines against flu, measles, chicken pox, polio, etc. Perhaps this all began with parental resistance to Gardasil, a vaccine against human papillomavirus, or HPV, introduced in 2006. HPV is a sexually transmitted virus that causes genital, anal, and oral cancers. It is the most common cause of cervical cancer. In order to confer maximal and lasting protection, it is recommended that children around 11 and 12 years old be vaccinated. Some parents have railed that this promotes promiscuity. They fret that the vax licenses licentiousness in children, akin to giving them condoms with illustrated instructions in their use. Balderdash!  

While that medical insurrection continues to smolder, along came COVID and the anti-COVID mRNA vaccines accompanied by the surprising resistance of many people against the shots. It is a resistance that seems to be growing and spreading to vaccines in general including those listed above that have long been commonly accepted.

This is concerning because it portends that in the near future, kids will begin coming down with diseases that we have pretty well controlled. In fact, in the last year or so, de novo cases of polio have appeared in the US in unvaccinated people. Before this incipient vaccine resistance, polio had been eradicated in North America, thanks to the vaccine.

It is safe to expect that vaccine resistance will persist, and probably increase as new vaccines are developed to treat cancer and better protect against flu. The mRNA vaccine technology is being used to develop new vaccines against the deadly skin cancer melanoma, and research is underway to also develop vaccines to prevent breast, liver, prostate, and other cancers. This use of modern vaccine technology to prevent cancer is a very novel and promising approach to dealing with malignancy. Anti-cancer vaccines are a potentially exciting new weapon in the armamentarium for the war on cancer. Too bad for those who would reject an effective cancer-preventing vaccine. At least they can fall back on the standard harsh radiation and chemo therapies.

mRNA vaccine technology also is being used to try to develop a universal vaccine against the flu. Flu is a highly malleable virus because there are many strains out that that can mix and shuffle their genetic material. This means that every year, it is a guessing game as to which combination of flu we will contend with—hence the changing flu numbers each year-- H1N3, H2N4, H3N1, etc. Since the Southern Hemisphere’s flu season precedes ours in the North, flu sleuths follow what goes on down there and track which strains make their way Northward, often via migrating birds, and try to predict what flu strains will be prevalent here each year. Then flu vaccines are made based on the best predictions. Usually, the annual flu vaccine is a mix of 2-3 of the flu strains that we are most likely thought to encounter. Some years we better predict which flu strains to vaccinate against than in other years, hence the efficacy of the vaccine can vary from year to year. Therefore, the advantage of a universal vaccine effective against all strains would be to remove this uncertainty and variability. That is the goal of using mRNA technology to take genetic material that is common to all flu strains and package it into lipid particles as pseudo-viral particles to trick the immune system to make an immune response to these parts of the viruses. If successful, this would protect against all flu strains and eliminate the need to guess which strains to vaccinate against. Theoretically.

The point is, vaccine science is moving forward and continues to offer great promise to prevent diseases that have proven very difficult to treat. The vaccine naysayers will miss the boat if they continue their misguided dissent. I suggest that they test their skepticism in a cemetery.

Go to an old cemetery and find the graves of people who died in the 1950s and earlier. See how many headstones belong to children.

Then go to the part of the cemetery where the grave stones are for people who died in the 60s and later and see how many graves are occupied by children.

The sharp drop in the number of childhood deaths after the 60s can largely be attributed to vaccines. Vaccines prevent serious disease and death in children who used to die from meningitis, pneumonia, dysentery, small pox, flu, and other diseases, but now do not. And to those who think that the vaccines are killing people, where are their headstones?

It is always better to prevent disease than to treat it. Vaccines prevent disease. Avoid vaccines if you wish. Darwin might approve.


Are COVID And Cancer Connected?

Nothing surprises me, I’m a scientist.” 

                            -Indiana Jones   

In 2019, the world was introduced to a brand new pathogen, the SARS-CoV2 coronavirus, that caused a brand new, and very odd disease, COVID-19. Between then and now, your humble bloggeur has penned 153 blog posts, many of which focused on how strange the disease is and describing our learning process as we figured it out on the fly. Many of these posts were necessarily equivocal because we simply did not have enough information to make firm conclusions on how the virus affects different people. Over time, we learned how to better treat the disease, and that learning curve continues. It was necessary to end many blog posts with the weak statement, “We will see.” Well we are still seeing and learning about this odd malady that consists of a melody of symptoms across myriad organs.

Research is now beginning to reveal a possible link between CoV-2 infection and cancer. As before, these observations are preliminary and will be further scrutinized, but they are bolstered by the discovery of a possible mechanism that could explain how the CoV-2 virus might cause cancer.

We know of many different viruses that cause cancer in animals. We also have a good understanding of how the viruses do that. There also are a few viruses, but not many, that cause human cancer, and we also mostly understand how they exert their oncogenic effects. These human cancer viruses include human papilloma virus (HPV), which causes cervical, and head and neck cancers. Hepatitis B virus can lead to liver cancer. Human T cell leukemia virus causes leukemia, and Epstein Barr virus can lead to lymphoma and a few other types of cancers. And so on.

To date, there has been very little association between any coronaviruses and cancer in animals or humans. But, that might be changing.

Several recent papers have revealed a genetic link between COVID-19 and cancer. One paper showed that people with an increased genetic risk of COVID-19, were also at increased genetic risk of developing endometrial cancer. The limitation of this study is that it cannot distinguish between a correlated high risk of COVID and cancer, vs whether COVID causes the cancer. It is the old conundrum of discerning between correlation vs cause-and-effect.

A second study incrementally advanced the above findings. Using a low resolution genetic mapping technique called genome-wide association, it found a positive correlation (there is that “C” word again) between people genetically predisposed to both severe COVID and increased risk for endometrial cancer. While still a correlation, one would predict that if there was a cause-and-effect relationship between COVID and cancer, that the risks for both would be similar. This is what the study showed.

Finally, a third study uncovered a possible mechanism by which SARS-CoV-2 could cause cancer. Having a possible mechanism in hand bolsters the possibility that the theoretical link between COVID and cancer is true. But first, a little back story about cancer genetics.

Cancer genetics.  Basically, cancer is a genetic disease. That does not necessarily mean that it is always inherited. Most cancers probably are not. But, when the genetic fidelity of a cell messes up, it can become immortal, can grow in an unregulated fashion, and can become resistant to normal signals that should cause it to die. In a nutshell, that is cancer. Generally speaking, there are two kinds of genes that contribute to this process. 1) Dominant acting oncogenes are aberrant genes that when expressed, drive the above activities. 2) Suppressor genes provide brakes to the above activities, and when absent, the brake is released. In both cases, genetic abnormalities either activate oncogenes to drive cell immortality and growth, or eliminate expression or activity of tumor suppressor genes removing the brakes to cell growth. Usually, cancer is a stepwise process in which cells sequentially accumulate different abnormal oncogenes and suppressor genes. The combination of which leads to full blown cancer.

One of the first tumor suppressor genes to be identified is called P53. In several different tumors, it was noticed that expression of this gene was missing due to DNA mutation. Further research showed that when expressed, P53 provides a brake on cell growth. There are many ways that P53 can be inactivated. Genetic mutation can prevent its expression, or hinder its function. We also know that a few viruses that cause cancer in people, like hepatitis B virus and Epstein-Barr virus, produce proteins that can interact with and inactivate the P53 gene product. A paper published in November, now reports that two CoV-2 proteins interact with cellular proteins to stimulate complex pathways that lead to degradation of the P53 gene product, releasing the anti-cancer brake in infected cells. The research also shows that that P53 activity is lost in patients with severe COVID disease but not in those with less severe illness. P53 loss also correlates with length of COVID symptoms. In other words, the more severe the COVID disease, the greater the chance that the P53 brake is lost.

This observation does not yet prove that inhibition of P53 by the CoV-2 virus causes cancer, but it now presents an important hypothesis that will be given much research attention. Questions remain regarding the association between CoV-2 infection and cancer. Also, since COVID infections are generally relatively short-lived, how long does the loss of P53 function last? Are long-COVID patients at increased risk for chronic loss of P53 and cancer? Is this loss of function sufficient to launch the multistep pathway that leads to cancer?

Once again, we will see.


Another Unexpected Pandemic Consequence: Undiagnosed Cancer

In these pages, your humble bloggeur (that would be me) has written about several unusual consequences of the COVID-19 pandemic. Most of these were on the ironically funny side, such as farmed fish being too large for restaurant plates, rattlesnakes climbing in plane landing gears, and the ketchup packet shortage. But, not all of these odd aftermaths of the pandemic are humorous. The topic of this post is very unfunny.

Lungs

It seems that as healthcare providers were swamped with COVID cases, or were at reduced capacity because staff became ill, or because service slowed in order to prevent CoV-2 spread, many people have missed routine medical care for non-COVID problems. It is feared that this will create a crisis in coming years involving increased diagnosis of cancers that were caught later than usual. As we deal with the fourth wave of COVID-19 caused by the Omicron variant, we are learning that the pandemic dramatically disrupted routine health screenings for cancer and other chronic diseases. Some now predict that the next crisis that could overwhelm the US health system will be a surge in advanced chronic diseases like cancer that went undiagnosed and untreated for too long.

Screenings for several major cancers and new cancer diagnoses fell significantly during 2020, according to a study published in December 2021 in the journal Cancer. This was not because there was less cancer in the world. It was because fewer patients were seeing their doctors.

A co-author of the Cancer study, and who is a professor at the University of Maryland School of Medicine, said that we have never before seen screening rates drop so dramatically in such a short time.

In one case, a Hispanic man in his 40s first noticed rectal bleeding in early 2020 that his doctor said was probably due to hemorrhoids. The man was unable to get a timely colonoscopy to rule out cancer because the local hospitals were overwhelmed with COVID-19 patients, and he also feared catching COVID if he went to a hospital swamped with COVID patients. Eighteen months later, he finally got a colonoscopy, which revealed advanced rectal cancer. Those 18 months likely were the difference between being cured by a simple polyp removal vs dealing with a cancer that had metastasized throughout his body.

At this point, nobody knows how many cases like this are out there. We will find out.  

This patient, as thousands of others like him, had the misfortune to notice symptoms that needed followup amid the biggest disruption of medical care in US history. In 2020, while hospitals curtailed services in order to prepare for the COVID surge, the number of colonoscopies plummeted 93 percent. By the end of the year, there had been 133,231 fewer colonoscopies performed compared to 2019. There also were 62,793 fewer chest CT scans, 49,334 fewer fecal blood tests, and prostate biopsies dropped 25%.

This drop in screenings has created a huge backlog that will take months to clear. A gastroenterologist at a small community hospital in the Middle-of-No-Where, Kansas was recruited by a larger hospital in Kansas City to do nothing but colonoscopies from 7 in the morning to “whenever at night.” They had a backlog of 1000 patients—a certain percentage of whom have cancer already growing in their colons while waiting to be told they had colon cancer. And that backlog begets a fresh one of new patients who also need to be scoped because they just noticed something like rectal bleeding, but will have to wait for those who have already been waiting.

This backlog creates a subtle form of medical rationing. It forces doctors to make hard choices about which patients to prioritize. "Lucky" are the serious patients who are moved to the head of the line. Not so lucky are those whose colonoscopies or mammograms or biopsies are then further delayed.

I would rather deal with rattlesnakes in my plane's landing gear or forgo mustard on my brat (which would be pushing the limit) than delay a needed medical test or procedure. It seems that your humble bloggeur (me again) has been caught in the backlog. I am scheduled to have an enlarged parathyroid gland removed next week, but COVID can still derail that. I won’t be certain that the surgery will happen until the day before I am to be operated on and that depends, in part, on everyone, including me, being COVID-free, and the OR not being diverted for use as a COVID ICU. If it proceeds as scheduled, I will have waited several months since the initial diagnosis for the surgery. An additional routine diagnostic test I need in order to determine how the fractious organ might have affected my bone health was scheduled six months out. Six months for a routine scan?