Congenitcal Rubella Syndrome

Lessons for COVID Vaccinations And Herd Immunity From Influenza And Rubella

Note: The following is modified from the blog post, “Rubella: We vaccinate for far less,” by Katelyn Jetelina, MPS, PhD who is an “epidemiologist, biostatistian, professor, researcher, wife, and mom of two little girls.” She writes a blog entitled, “Your Local Epidemiologist.”

 “Those who cannot learn from history are doomed to repeat it.”

 George Santayana

 

In the US, more than 300,000 kids aged 5-11 have been vaccinated with the Pfizer COVID-19 vaccine, which has proven that the vaccine is safe and can benefit some kids. It prevents infection, COVID-19 disease, death, long COVID-19, and keeps kids in school. Admittedly, only a few kids develop serious COVID disease and fewer have died from it. Most infected kids only have mild, if any, symptoms. Vaccine skeptics use this fact to stridently argue against childhood COVID vaccines. So, why are we pushing to vaccinate children who rarely get seriously ill?

There are two reasons why we vaccinate anyone. The first reason is to protect the vax recipient from the disease; this is an individual-level benefit of the vaccine. The second is to protect a larger population by trying to retard disease spread; this is a population-level benefit of vaccines that is better known as herd immunity.

But, anti-vaxers only focus on the fact that childhood vaccines provide little individual-level benefit to children and wholly ignore the larger population-level benefit of the vaccines. As I have written before, vaccinating children who are at low risk for serious disease is still very important for reducing viral spread in order to  prevent more dangerous viral mutants from emerging. It also is important for reducing infection and disease in more vulnerable people in the population. It is these population-level benefits that are the most important reason to vaccinate low-risk children. Vaccinating children for a population-level benefit, rather than for individual-level benefit, is not at all new and is a very acceptable practice. Here are a couple of examples.

Influenza: A few decades ago, Japan mandated flu vaccines for all school kids. That vaccine slowed the spread of flu in schools leading to many fewer student illnesses and absences. More significantly, vaccinating all school kids also caused a sharp drop in flu deaths in older people like school teachers and staff, parents, and grandparents who have close contact with the kids.

Kids are walking incubators for respiratory viruses and readily spread their germs to others. Infected children essentially are virus vectors much like mosquitoes are vectors for malaria and yellow fever. Therefore, in Japan, the flu vaccine effectively shut down a major vector of influenza infection for at-risk older people. That is an undeniable and important population-level benefit of vaccinating school kids against the flu.

Rubella: Now, let us take a deeper dive into rubella, or German measles, and its vaccine, which is the “R” in the MMR shot. It is especially enlightening to compare the natural history of rubella to what we are learning about COVID-19.

Both COVID and rubella are caused by airborne viruses that spread when infected people cough, sneeze, or even talk. As with COVID, rubella symptoms in children are quite mild. They include its tell-tale measles-like rash, sore throat, low grade fever, mild pink eye, and general discomfort. But, about 25 to 50% of infected children will not experience any symptoms. Likewise, many CoV-2 infected kids also do not develop symptoms. But, asymptomatic kids infected with either rubella or CoV-2 readily spread their viruses to friends and family; hence, they can be significant vectors delivering both viruses to people at-risk for serious disease.

Over the last two years, we have learned that COVID mostly (with significant exceptions) causes serious illness and death in older people or for those with certain other health conditions. Similarly, while rubella only causes mild disease in most children, it is incredibly dangerous for developing fetuses. A woman infected with rubella during the first 3 months of pregnancy has a 90% chance that the fetus either will not survive or will develop Congenital Rubella Syndrome (CRS), characterized by deafness, blindness, heart defects, and/or severe brain damage. In the early 1960s, a rubella outbreak began in Europe and spread to the US. In 1964-65 ~12.5 million total cases were reported in America affecting nearly 50,000 pregnancies. More than 11,000 of the infected mothers miscarried, or delivered still-born babies. Of the >20,000 infants born alive to infected mothers, the majority had severe illnesses: 2,100 died shortly after birth, 12,000 were deaf, 3,580 were blind, and 1,800 had permanent mental disabilities.

The rubella outbreak proved hard to contain because, as with COVID, infected asymptomatic people make it hard to know when someone is spreading the virus. Rubella also is just as contagious as COVID. Both viruses have an R0 = 6-7 meaning that each infected person will infect, on average, 6-7 other people. For comparison, flu’s R0 = 2-3, which means it is about half as contagious as the other two viruses. It, therefore, is not surprising that like rubella, the COVID outbreak is proving hard to contain.

Soon after the 1960s rubella pandemic began, a safe and effective vaccine was quickly developed and approved for use in Europe and North America (this is reminiscent of the quick development of the COVID vaccines). Early on, there was a robust international debate on who should get the rubella vaccine. There were two schools of thought:

  1. Despite the fact that rubella only caused mild problems in kids, some proposed vaccinating all children hoping to provide indirect population-level protection for pregnant women and their at-risk fetuses.
  2. Others argued that because children were only minimally affected they should not be subjected to the vaccine and that only women of childbearing age should be vaccinated. This, proponents argued, would more specifically protect those most at risk.

Ultimately, it was found that countries that chose #2 were not able to sufficiently reduce the virus, because it still spread unfettered among children. This strategy did not reduce the rates of CRS. Eventually, option #1, vaccinating low-risk children (like what we are moving toward with the COVID vaccine) was adopted world-wide. Vaccination rates of school kids reached ~85% in the US, which last experienced a serious rubella outbreak in 1995. In 2004, transmission of rubella was eliminated in the United States and in 2015, it was eliminated in all the countries of North and South America.

Soon, the MMR vaccination was mandated for children in all 50 states. It is important to realize that these mandates were not to protect kids from the mild disease but to protect the at-risk population, or fetuses. In other words, we vaccinate kids against rubella not so much to protect them, but to provide a significant population-level benefit to others.

Today, because of broad rubella vaccination of low-risk children, we see an annual average of just 10-15 cases of CRS in the US that are traced back to international travel to countries with poor rubella vaccination rates. In contrast, in countries with low vaccination rates, about 120,000 children are born each year with severe CRS birth defects and even more die in utero.

Bottom Line: This country, and indeed all of the Americas and most of Europe came together to eliminate endemic rubella through broad population-level vaccination programs targeting low-risk groups responsible for spreading the virus to the high risk population. Japan saw the same effect with influenza. They focused on broadly vaccinating a low-risk population (school kids) and saw great benefits in the high-risk older population. As we approach a broad COVID vaccination strategy that includes giving the shot to low-risk children, it very likely will have a population-level benefit and help protect those most at-risk for serious disease.

It is important to note that the population-benefit conferred by the COVID vaccine also applies to all of us and not just to children. When we are vaccinated, not only does it protect us, it also provides significant protection to at-risk people around us. That, in fact, is called “herd immunity.”

Note: In order to have blog updates delivered to your email, see the simple Subscription Instructions here. Remember, you can easily unsubscribe when you want.