mucous membranes

NIH Launches First Trial Of Nasal COVID Vaccine

"Taking a new step, uttering a new word, is what people fear most.”
― Fyodor Dostoevsky, Crime and Punishment

Earlier in these pages I described how the mucosal immune system is different from the general immune system of the body. Your mucosa (i.e., the lining of your nose, mouth, throat, sinuses, lungs, etc.) has its own robust immune defense and produces different types of antibodies in response to invaders. The nose, mouth and throat are often the first line of defense to airborne pathogens, such as the flu and SARS-CoV-2 viruses. So, when you are infected via the mucosa by an airborne pathogen, it activates a local immune response while eventually sounding an immune alarm for the body-whole. But by the time the infection settles in and the rest of your body responds, it is all-out immunological warfare and you feel crappy (hope I am not being to technical). Sometimes the bug wins too. Too often, especially before we had the vaccines, COVID won, and folks were hospitalized in dire straits with tubes attached to machines keeping them alive, too often failing.

The amazing vaccines we developed in record time were delivered into an arm muscle to stimulate our general body immune response, not our mucosal immunity. This meant that even though we had immunity, the virus could still enter us, set up shop and wait until the general body immune reinforcements arrived. Those reinforcements were quite effective at preventing serious disease, but you still would get ill.

Wouldn’t it be nice if a vaccine could be developed to nip the infection in the bud at the site of entry--in the mucosa--so it could not set up shop at all? That is an idea that has been percolating in the minds of immunologists for a while. It is the idea behind a mucosal vaccine that I described earlier.

But, if it is such a good idea for the CoV-2 coronavirus, why not for flu or other airborne pathogens that have been around much longer? Indeed efforts to develop nasal vaccines for influenza have been ongoing for a couple of decades. But, when is the last time you got a nasal spray vaccine for the flu? The track record has been mixed. The FluMist nasal flu vaccine was approved for kids in 2003. Initially it was a convenient alternative to the injected vaccine. But, it showed limited efficacy in adults. Early on it was deemed just as effective as the standard vaccine in kids, not better as hoped. More recently it was reported to not be so effective. As a result it is no longer recommended by the American Academy of Pediatrics. It clearly did not rise to the hope we had for a nasal flu vaccine.

All the above negativity for the early nasal flu vax doesn’t mean that the idea of a nasal flu vaccine is invalid. Researchers will test different sorts of flu antigens for the nasal approach. FluMist used a live, but attenuated virus in its nasal vaccine. That means kids snorted a live virus that could infect cells but not cause disease. Perhaps a different flu antigen would be more effective? But, frankly, it is hard to get more realistic than a live-attenuated virus.

Nevertheless, another promising new flu nasal vaccine candidate is FluGen’s, M2SR, developed by researchers at the University of Wisconsin-Madison. This vaccine is a bit different because it uses a wholly live virus with an essential replication gene deleted from its DNA. This means the virus is fully functional except it can’t replicate and cause illness. That makes it a little different from the live-attenuated virus. It should stimulate the immune system like a natural infection, but begs the question: how will that be different from the immune response generated from a live attenuated virus? How will that crippled snuffed virus stimulate a different immune protection from the sniffled FluMist attenuated virus? We will see, won’t we? That is why we do such experiments.

Back to COVID. This summer, NIH launched the initial Phase 1 trial to begin testing such a nasal COVID vaccine.

The vaccine. The vaccine is a mouse virus (MPV) in which a piece of the CoV-2 spike protein is expressed. MPV does not cause human disease but does like to stick to human and primate mucosal epithelial cells and should be an effective vector for delivering the spike protein sequence where it can tickle an appropriate immune irritation. In animal studies, the experimental virus was safe and produced a robust immune response in the mucosa lining the nose and respiratory tract of experimental animals. All very encouraging, hence the move to human trials.

The human trial. This is a Phase 1 trial, the first step of any experimentation in humans. Phase 1 trials do not look for efficacy and are done on quite a small number of patients, anywhere from 20-100 subjects who are not tested at all for resistance to the disease. The purpose simply is to look for common safety issues like whether the vaccine causes a general adverse reaction with increasing doses and how well it induces an immune response (i.e., anti-spike protein antibodies) at different doses. Using this information, a Phase 2 study can be designed including more subjects, usually hundreds. This begins to look for more subtle side effects and is the first test of the ability of the vaccine to protect against COVID disease. This would be a controlled trial where experimental vaccine recipients are compared to a control cohort who do not get the nasal vaccine, but probably a placebo. If data collected from this study warrant, then a Phase 3 study is done on thousands of patients to further refine the safety and efficacy profile of the vaccine.

The Phase 1 study that is underway is being led by the National Institute of Allergy and Infectious Diseases and is enrolling 60 subjects at trial sites, which include the Baylor College of Medicine, Houston; The Hope Clinic at Emory University in Atlanta; and New York University on Long Island. The immune responses of volunteers will be followed for one year. So, it will be a while before investigators have the data to begin Phase 2 trials.

Bottom line. This is just the beginning and it will take several years to finish. If successful, this would represent the next generation of COVID vaccine. Finally, as I have often ended my blog posts…

…we will see.

Note: In order to have blog updates delivered to your email, see the simple Subscription Instructions here. Remember, you can easily unsubscribe when you want.


While SARS-CoV-2 And Our Immune Systems Do A Dance, We Get Re-Infected

Note: Artificial intelligence wrote nary a word of the following article, which was fully composed by the natural intelligence of a certain human.

Your sometimes humble blogger remembers how immunology science first beguiled him. It was during senior year in high school in the Virginia suburbs of Washington, DC. More specifically it was during a lunch break while working at a People’s Drug Store that had a lunch counter. Your then nascent blogger grabbed the recent issue of Scientific American from the magazine rack and opened it to an article that was way above his green scientific understanding but, he, nevertheless, gleaned from the article that the immune system could make antibodies to just about any molecule in the universe, even ones newly created in a lab that the universe had never seen. Amazing!

Your immune system would also make antibodies against the cells and tissues of your best friend and everyone else in the world, and vice versa, but you and your best friend, et al., would not make antibodies against the same cells and molecules in your own bodies! What?

“Holy cow!” I thought. How in the world can the immune system do all that? How can it respond to something the world had never seen and secern friend from foe? At that moment, at that lunch counter over a burger, Coke and an article I barely understood, an immunologist was made. And I did indeed go on to earn a PhD in immunology and I indeed have studied how the immune system recognizes viruses and have done vaccine research. What a pivotal lunch break that was for me.

The question about antibody discrimination clearly fascinated me. That mystery has been solved and a few Nobel prizes awarded for its elegant solution, but related spin-off questions about how antibodies protect us keep coming up in different ways. It did so most recently during the COVID pandemic. Why weren’t the antibodies we generated via vaccination or via natural infection more protective against subsequent infection? In a twist in the plot of biology, it turns out that we have learned that the answers to these questions center around a complicated dance performed between both the virus and immune biological systems.

Biology is so doggone interesting!!

COVID Vaccine generated immunity: The several vaccines we now have against the SARS-CoV-2 virus are effective and provide examples of how vaccines are very good at getting the immune system to respond to what it detects as foreign invaders. But the vaccines are just designed to tell our immune systems to make antibodies against just a very small fragment of the spike protein. In contrast, the virus is constructed of several large proteins each of which has many different regions that the immune system can separately recognize as foreign. In other words, if the virus is like a brick building, your system theoretically can make a different antibody that specifically recognizes each brick of the building. So, the vaccine is like exposing the immune system to about 2-3 bricks of the whole building and trusting the resulting immune response against those few bricks to bring the whole building down.

The immune system was very good in generating antibodies to a small portion of the virus, yet many vaccinated people still were infected and caught COVID. Does that mean, as many vax naysayers claim that the vaccines were ineffective? Not at all, as I have discussed here before. While the CoV-2 vaccines did a good job at protecting against serious disease and death they were not very good at preventing the spread of the virus. These vaccines effectively generated a systemic immune response, meaning that you had anti-viral antibodies circulating in your blood, which did do a very good job preventing serious disease once the virus got inside you. But, it still got inside. You still got infected and got mildly sick.

We now know that the virus enters via mucous membranes in your nose, sinuses, mouth, throat and eyes. It has to first cross mucous membranes in order to infect you and that is where it needs to be stopped in order to actually prevent infection and further spread to others. The problem is that mucosal immunity is caused by a different type of antibody than what circulates in the blood and by what is generated by a typical vaccine that is given by an injection in the arm. To generate mucosal immunity, you need a vaccine that you spray in your mouth or nose, which then should generate the type of antibodies that provide mucosal protection and better protect you from infection via that route and better prevent the virus from spreading through a population.

At the beginning of the pandemic, we were faced with a brand new pathogen for which we knew nothing about how it behaved or how it infected and spread between people. At that point, we reasonably chose to quickly make the most common type of vaccine--a shot. While it didn’t fully protect against getting infected, it nevertheless was very effective at protecting against serious disease. So, it did a good job. Current efforts are underway to develop a mucosal vaccine. But, we must also deal with other complications we have learned about the dance between the virus and the immune system to make sure that vaccine will be maximally effective at preventing infection. Read on.

“Natural” COVID immunity: As it became clear that vaccinated people were still getting infected, the vaccine dissenters and dissemblers proclaimed loudly, and still do, that the vaxes failed miserably. They ignored the survival data and only focused on the infection data. They then began touting “natural immunity,” which is the immunity one usually gains after being naturally infected. But, that can be uncertain given the fact that the route of infection and the dose of virus can vary wildly and confer different levels of protection, as I reported earlier. Plus, with natural infection, one runs the risk of serious disease and death from the disease.

Then, to the chagrin of the “natural immunity” enthusiasts it turned out that they also were getting re-infected! And this re-infection occurs despite the fact that natural immunity occurs after infection across the mucous membranes that should, as discussed above, generate an immune response that would stop an infection! This is the dance.

Therefore, we now know that neither vaccine immunity, nor infection immunity fully protects against future infection with the CoV-2 virus (there is partial protection, but I won’t go into that here).

As we learned as recently as last April, from a Harvard study published in the journal Science, despite the fact that a natural infection presents the immune system with the full viral “building and all its bricks” potentially recognizable by antibodies, it turns out that only a few of the “bricks” are in fact actively “seen” at any time by the immune system.

This immuno-dominance of a small part of a larger pathogen that has thousands of sites or bricks the immune system can recognize is not unusual. It is like a large building consisting of thousands of bricks, but having a very attractive window that draws your attention. While you know an entire building is there, your attention is mostly drawn to the window. So can the focus of the immune system be preferentially drawn to a small part of a larger edifice. The immune system is perfectly capable of seeing the rest of the “building,” but it prefers to direct its attention to a small part of it. However, if you take away the part it prefers to focus on, the immune system will easily recognize something else. This immuno-dominance in what the immune system “sees” has several causes that are way too complicated to go into here without writing a textbook (an interested reader might try Paul’s Fundamental Immunology. My rather old edition of that book runs about 1500 pages!). Suffice it to just know that this sort of immuno-dominance often happens where only a small part of a large pathogen is preferentially recognized by the immune system.

Thus, the immunity developed after a natural infection is mostly only directed at a small portion of the virus, much like the antibody response after vaccination with just a small part of the virus. The natural immune response, like the vaccine immune response, is robust and effective, yet both are only directed against a very small portion of a big pathogen, and both are very leaky in that one can still get infected again! What gives?

Mutation gives.

How the virus escapes immunity: The SARS-CoV-2 virus is highly mutable unlike the other viruses like polio and small pox we vaccinate against and maintain long term immunity against. Thus, the virus quickly mutated, or changed, the “bricks” against which the vaccines were made rendering the immune response less and less effective over time as new viral iterations appeared. That is why the many boosters we got were necessary to keep vaccination immunity up with viral changes.

And that also is how someone who became immune after natural infection also became re-infected. The virus did a two-step and mutated the small region recognized by the immune system. It was pretty easy for the virus to do since it only had to change a couple of “bricks” in its facade that the antibodies were mostly attacking. That means that upon re-infection with a slightly mutated virus, the immune systems have to be re-educated to recognize a new intruder, and that takes time, which allows a new infection to settle in. Thus, in this dance, the gentleman virus leads and the dame immune system follows.

New vaccines continue to be developed that scientists hope will solve these problems unique to SARS-CoV-2. Most of the new vaccines are being built on the mRNA platform, but using novel approaches to 1) develop vaccines that can be given as a nasal spray in order to generate the mucosal immunity that hopefully would be more effective at actually preventing COVID. If this works, it might even be possible to hinder COVID spread. 2) But in order to block CoV-2 spread on a population level, we need to find other regions of the virus that are not so highly mutable. These would conceivably be regions of COVID proteins critical for viral function that tolerate little change in structure because that change would destroy the proteins' critical function and essentially kill the virus. Alternatively, new vaccines could incorporate multiple "bricksl" from different regions of the edifice assuming that it would be nigh impossible for all those sites to simultaneously mutate. If such regions are accessible to the immune system, then the resulting immunity would be expected to be impervious to viral mutation, thus ending the dance on a sour note.

It is even possible that such a vaccine could protect against a wide range of coronaviruses, thereby preventing future health problems arising from new coronaviruses. Remember SARS that also popped up in China a couple of decades ago? That virus has some genome similarity to the virus that caused the COVID pandemic, and both are distantly related to the virus that caused MERS that arose in the Middle East. If a pan-coronavirus vaccine can be developed, it could feasibly prevent many future epidemics and pandemics.

We shall see.

This is all part of a new biology that I earlier dubbed BioX. Biology is so doggone interesting!!

Note: In order to have blog updates delivered to your email, see the simple Subscription Instructions here. Remember, you can easily unsubscribe when you want.